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In this paper we present boundary conditions appropriate for the vorticity formulation of 
the two-dimensional incompressible viscous Navier-Stokes equations. These boundary condi- 
tions are incorporated into a finite difference scheme and the resulting method is of the ?or- 
ticity creation” type; i.e., vorticity is generated at the boundary to ensure that the tangential 
velocity boundary condition is satistied. The results of computations with this finite difference 
method are presented for flow past a circular cylinder. A difference scheme and computational 
results for a model problem, the Prandtl boundary layer equations describing flow over a 
semi-intinite flat plate are also presented. f@? 1989 Academic Press, Inc. 

INTRODUCTION 

In this paper we present results concerning boundary conditions for the vorticity 
form of the time-dependent 2-D Navier-Stokes equations. Our primary results are 
a derivation of appropriate boundary conditions for the vorticity and a description 
of a finite difference scheme which incorporates these boundary conditions. The 
finite difference method is used to calculate flow past a circular cylinder. This 
problem was selected so that our computational results could be judged by a com- 
parison with existing computational and experimental results. The problem of flow 
past a cylinder is also of interest because of the difficulty which is introduced by the 
fact that the fluid domain is infinite. In this paper we present a technique for over- 
coming this difficulty. We also discuss boundary conditions for the vorticity form 
of the Prandtl boundary layer equations and present a finite difference method for 
computing solutions of them. We calculate flow past a semi-infinite flat plate and 
compare the results with the Blasius solution. The reason for considering the 
Prandtl boundary layer equations is primarily to aid in the exposition of the ideas 
and techniques used in working with the vorticity form of the Navier-Stokes equa- 
tions. However, there is independent interest in these equations. We are able to 
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exhibit a finite difference scheme in which the boundary condition implementation 
is a direct analog of that used by Chorin in his vortex sheet algorithm [S-7]. We 
thus find that a technique which has appeared to be of value only for vortex blob 
methods has an analog which may be useful within the context of finite difference 
schemes. Our computational results on both the problem of flow past a cylinder 
and flow past a flat plate indicate that the boundary conditions which we present 
here can be incorporated into finite difference schemes in such a way that the 
evolution of vorticity in the fluid and on the boundary is accurately predicted. 

Many different techniques for overcoming the difficulty of vorticity boundary 
conditions have been employed in numerical methods. There appear to be three 
classes of schemes, The first class are those schemes which exploit the relationship 
between the vorticity and the stream function on the boundary. (See among others 
[ 12, 151.) The second class are those schemes proposed by Quartapelle and 
Quartapelle and Valz-Gris [ 16, 173. In these papers it is shown that in order for the 
boundary conditions on the velocity to be satisfied, the vorticity should evolve 
subject to an integral constraint. The schemes presented in the papers essentially 
consist of ensuring at each time step that the approximate vorticity satisfies this 
constraint. The third class of schemes are those employed in vortex blob methods 
and were introduced by Chorin [4-73. In such methods vorticity is introduced on 
the boundary in a way which ensures that the boundary conditions on both com- 
ponents of the velocity field are approximately satisfied. Judging from the fact that 
one can obtain reasonable results with each type of scheme, we conclude, that, 
although these schemes appear to differ greatly, they must be implicitly satisfying 
some specific vorticity boundary conditions. One of the motivations of this work 
was to find a representation for the vorticity boundary conditions which would 
shed some light on this issue. 

The derivation of our vorticity boundary conditions is based on two key observa- 
tions. The first observation, one contained in the work of Quartapelle and Valz- 
Gris, is that the boundary conditions on the velocity induce a constraint on the 
vorticity. The second observation is that the constraint can be ensured by requiring 
that it be satisfied at an initial time and by requiring that the time derivative of this 
constraint vanish. The requirement on the time derivative leads to explicit bound- 
ary conditions for the vorticity of an integral-differential nature. The derivation of 
numerical methods which use these boundary conditions can be accomplished by 
mimicing the derivation of the continuous boundary conditions ‘with discrete 
operators. This procedure is used to construct a scheme for computing flow past a 
circular cylinder. Since the vorticity boundary conditions ensure that the vorticity 
will evolve subject to the appropriate constraint, our numerical method is similar 
to that which would be obtained by an implementation of Quartapelle and Valz- 
Gris’s technique. However, in our implementation it is immediately apparent that 
vorticity creation occurs on the boundary as a direct consequence of the require- 
ment that the time derivative of the constraint vanish. Thus, the method exhibits 
vorticity creation on the boundary and in this respect is similar to those proposed 
by Chorin. (In the case of the boundary layer equations, there is a direct analogy.) 
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This suggests a connection between Chorin’s techniques and the technique of evolv- 
ing the vorticity subject to a constraint. We have not been able to clearly see a con- 
nection between the schemes which incorporate our boundary conditions and those 
which might be obtained using the ideas in [ 12, 151. We are confident that future 
investigations will show that the methods are closely related. Other than provide a 
demonstration of accuracy by a comparison of our computational results with other 
schemes and experiments, we have not performed an error analysis of our scheme. 
We are hopeful that our representation of the vorticity boundary conditions will 
facilitate such an analysis. This representation may also be useful in the analysis of 
previous numerical schemes-particularly those due to Chorin. 

In Section 1 we discuss the origin of the problem with vorticity boundary 
conditions and then present our derivation of appropriate boundary conditions for 
the vorticity. Before discussing the numerical implementation of these boundary 
conditions we discuss, in Section 2, boundary conditions and a finite difference 
scheme for the Prandtl boundary layer equations. In the remaining two sections we 
present a finite difference scheme for computing flow past a circular cylinder and 
discuss results which were obtained with this scheme. 

1. DERIVATION OF THE VORTICITY BOUNDARY CONDITIONS 

The equations we are concerned with are the two-dimensional incompressible 
Navier-Stokes equations, 

$+(u.V)u= -VP+“Au, (1.1) 
v.u=o, (1.2) 

u(a) = B(a) for aE&2. (1.3) 

Here u is the velocity, P the pressure, and v the viscosity. We assume the fluid is 
of constant density equal to one. Q is the region in R* with boundary X?. B(U) is 
the velocity on the boundary (often taken to be identically zero). 

In the vorticity formulation of (l.l)-( 1.3) the velocity field u is taken to be the 
sum of a velocity field due to an irrotational flow and a velocity field due to a 
rotational flow. Let 4 be the potential for the irrotational flow and Y the stream 
function for the rotational flow. We assume 4 satisfies 

a4 Ad=O, %=B.n on asz. 

Here n denotes the normal to the boundary. 
Let w be the vorticity. By taking the curl of Eq. (1.1) one obtains the following 

equation for the transport of vorticity: 

(1.4) 
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Here 

75 

(1.5) 

and Y, the stream function, is determined from the equation 

AY= -0, 

Y=O on aa; (1.6) 

The boundary conditions given above for 4 and Y guarantee that the normal 
velocity boundary condition is satisfied. To satisfy the tangential velocity condition 
we must also have 

g= b(a) for creao 

where b(a) = - [B . r - (c$,, 4,). t] and r is the unit tangent to X2. 
In the translation of the equations from primitive variables (1.1 )-( 1.3) to the vor- 

ticity form (1.4k(1.7), boundary conditions for the vorticity are not obtained. 
Moreover, it appears that to many boundary conditions are given on the stream 
function. (Both those in (1.6) and (1.7) must be satisfied.) However, a bit of 
thought reveals that the freedom in choosing the vorticity boundary conditions 
occurs precisely because the stream function is over determined. For, unless there 
is some mechanism for manipulating w in the interior of the domain, the problem 
which defines Y will not, in general, be well posed. It is therefore not surprising that 
a common thread which runs through all numerical implementations is the 
manipulation of the vorticity, usually near the boundary, in a way which ensures 
that both (1.6) and (1.7) are satisfied. Of course, this over determination appears 
only because of our desire to first compute the vorticity and then secondly the 
stream function. The boundary conditions (1.6) and (1.7) are quite appropriate 
when considering the stream function as the primary variable i.e. these boundary 
conditions are consistent with those necessary for the biharmonic operator 
occurring in (1.4). 

Quartapelle and Quartapelle and Valz-Gris [16, 171 show that one can close the 
equations for the vorticity by adjoining a constraint which ensures that (1.6) and 
(1.7) are simultaneously satisfied. The basis for their methods is the following 
theorem given in [ 161: 

THEOREM. A function t in 52 is such that -l = AY, with Y lr = a(cl) and 
aY/an = b(u), if and only if 

for all functions r] such that Aq = 0 in Q. 
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The numerical methods presented in [16, 173 for solving (1.4))( 1.7) consist of 
requiring that the approximate solution satisfy (1.8) at every timestep. One of the 
drawbacks of these methods is the necessity of computing and storing the discrete 
versions of the harmonic functions used in the implementation of (1.8). In later 
work [18] it is shown that this problem can be avoided and that the implementa- 
tion of (1.8) can be reduced to solving a boundary integral equation. That such a 
reduction is possible suggests that by enforcing the projection condition (1.8) they 
are implicitly implementing some boundary conditions for the vorticity. 

In our derivation of an explicit representation for the boundary conditions we 
assume the viewpoint, suggested by the work of Quartapelle and Quartapelle and 
Valz-Gris, that one should consider the evalution of the vorticity as a constrained 
evolution. However, instead of finding the constraint on the vorticity and adjoining 
it to the equations as these authors do, we proceed by finding conditions which 
ensure that as the vorticity evolves the constraint will automatically be satisfied. To 
do this, we first express the constraint in a different form than that given by (1.8). 

We assume that the boundary condition (1.6) is used to determine Y and 
consider the “extra” boundary condition (1.7) as a constraint on the vorticity. To 
express this constraint we use the Green’s function G(x, S) for the domain L2. This 
function is the solution of 

dG(x, s) = d(s), XEQ, G( a, s) = 0, aEm 

where 6(s) is a Dirac delta function located at s E 52. We have 

Y’(x) = - jQ G(x, s) o(s, t) d>T 

so that condition (1.7) can be written as 

; jQ G(a, s) w(s, t) ds = -b(a) for ME&?. (1.9) 

To find boundary conditions which ensure that solutions of (1.4) induce a stream 
function which satisfies both (1.6) and (1.7), we find boundary conditions which 
guarantee that the derivative with respect to time of the constraint (1.9) vanishes. 
We require 

G(a, s) o(s, t) ds + b(a) = 0 for aE X?. 

If we use the fact that o is a solution of (1.4) and the Green’s identity 

4x) = jQ G( x, s) dw(s, t) ds - 
s r?R g (x, a) da, t) da, 
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we find 

$ij G(rx,s)w(s,t)ds=O 
R 

-;j 
R 

G(a,s)$s, t)ds=O 

-;j G(cl,s)(-U.Vo(s,t)+vdo(s,t))ds=O 
R 

a 
-an R J‘ G(a, s) dw(s, t) ds =; j G(cc, s)[U .Vo(s, t)] dr 

R 

am a o-+- an anj~n~lar,7)o(.i,t)~~=t~j~G(a,s)[U-Vw(s,r)lds. (1.10) 

This is an integral-differential equation which determines the boundary values. 
Values satisfying (1.10) and used as data for (1.4) will ensure that the time 
derivative of (1.9) will be zero. If we assume that the initial vorticity satisfies (1.9), 
then we will have ensured that this constraint, and hence (1.7), is satisfied for all 
time. 

2. RESULTS FOR THE PRANDTL BOUNDARY LAYER EQUATIONS 

In this section we apply the ideas of the previous section to the Prandtl boundary 
layer equations. This set of equations, which we shall use to describe laminar flow 
over a half-infinite flat plate, is a simpler set of equations than the 2-D 
Navier-Stokes equations, and yet when expressed in the vorticity formulation pos- 
sesses the same problems with vorticity boundary conditions. We shall derive the 
continuous boundary conditions for the vorticity, and then implement a numerical 
method using these boundary conditions. Results of computations with this numeri- 
cal method will be presented. A similar discussion concerning the implementation 
of numerical methods for the 2-D Navier-Stokes equations will be presented in the 
next section. 

In the vorticity form, the Prandtl boundary equations describing flow over a half- 
infinite flat plate are 

am 2 

~+".vw=v* ay2' 
au 

o= 3' 

(2.1) 

(2.2) 

5 00 
u=u,+ 4x, s, t) 4 

Y 

I 
Y autx, $, t) "E - 

0 ax 4 

(2.3) 

(2.4) 

581/80/l-6 
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with boundary conditions 

u=u=o at y=O, x >O, (2.5) 

u=u cc at y=+cc and (u, 0) = (u,, 0) for x<O. (2.6) 

Here (u, u) is the velocity and w the vorticity. The domain is the quarter plane 
O<x<cc andO<y<oo. 

As is the case with the Navier-Stokes equations, when one reconstructs the 
velocity field from the vorticity using (2.3), it is not automatic that the boundary 
condition on u in (2.5) will be satisfied. Similarly, boundary conditions necessary to 
close Eq. (2.1) are not given. We proceed, as in Section 1, to derive boundary 
conditions by expressing the condition on u in (2.5) as a constraint on the vorticity 
and then setting the time derivative of this constraint equal to zero. Using (2.3), the 
constraint on the vorticity is 

I 
cc 

u,+ w(x, s, t) ds = 0, x20 and t>O. (2.7) 
0 

Thus we require 

a 00 
at0 I w(x, s, t) ds = 0 

-1 
m am 
0 dt( x,s, t)ds=O 

-5 

cc 2 

-uVw+vcds=O 
0 8Y’ 

[u .Vw] ds. (2.8) 

Now (2.8) is the desired boundary condition and when added to (2.1 k(2.4) closes 
the equations. We now consider a numerical method for solving these equations 
which incorporates these boundary conditions. 

Our computational domain is the rectangular region described by the points 
(x,y) such that Odx<x, and O<ydy,. The mesh we use is rectangular with 
widths dx and dy in the x and y directions, respectively. The values of the vorticity 
and velocity are computed at the grid points (i dx, j dy) and are designated by oi,+ 
Q, and vi, j with 0 6 i < m and 0 <j < n. To approximate (2.1) we use a one-step 
explicit method (Euler’s method) to advance the solution in time, and approximate 
the advection term u .Vo using a second order upwind differencing scheme due to 
Colella [8]. (We believe the results are relatively independent of the advection 
scheme used.) The second derivative term was approximated by central differences. 
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Our scheme is thus expressed by 

w/f?’ 

‘.I 
-Wfj 

6t 
* = -A~,~(u~, wk)+ D; D,wff, 

where Ai, j(~k, gk) is the second order approximation to the convective term in (2.1) 
and 

DtD,~~j=W:jtl-2w:jJrw:j-1 

dy2 

To construct u we use the trapezoidal rule to approximate the integral in (2.3). 
We assume no vorticity above the line y = y,, and hence u = U, for points above 
this line. For the remaining points (i < n) we use 

u, ,=u + i (wivP+wi~P+l)dy. 
*,J m 2 ) P=i 

(2.11) 

u is approximated using 

~i+l,p~Ui~I,p+Ui+I,p+I~Ui-l,pfl 

2 dx 2 dx 4s (2.12) 

i.e., a trapezoidal rule approximation to (2.4) in which central differences are used 
to approximate the derivatives of u. At points on the left and right computational 
boundaries second order one-sided differences are used in (2.12) instead of central 
differences. 

It remains to specify the boundary conditions used for the vorticity. At the left 
edge of the computational boundary, the inflow side, we assumed that there is no 
vorticity immediately upstream. At the right edge of the computational boundary 
we assumed outflow boundary conditions, i.e., the vorticity is unspecified at points 
just outside of the computational domain. At the top and bottom of the domain we 
specify the normal derivative of w. This data was incorporated into the difference 
stencil using the method of fictitious points. For points on such boundaries, the 
central difference occurring in (2.10) uses a point just outside the computational 
domain. This point is eliminated by using the normal derivative boundary condi- 
tion. For example, at points on the plate, the second derivative term is 
approximated by 

D,fDywio=2wi~1-2wi30 2 aw 
dy2 4 8Y i.0’ 

For the data at the bottom we used 

Ai,p+ ,(Uk, ok) + Ai,p(Uk, Wk) 
2 1 dy, (2.13) 
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i.e., a discrete analog of (2.8). At the top we used the boundary condition 
&@y I i,n = 0. This was chosen because it ensures that the boundary condition u = 0 
at y = 0 is satisfied exactly by the discrete scheme. This fact can be verified by 
directly calculating the difference in the velocity at the plate induced by &+ i and 
& and employing a discrete version of the arguments used to find the conditions 
that the time derivative of the constraint (2.7) vanish. An upper boundary condition 
appears in this discrete derivation because the computational domain is finite. 

Our computational results correspond to a parameter selection of v = 0.025, 
xm = 1.0, y, = 1.0, and an onset velocity U, = 1.0. The values of parameters v, uao, 
x and y, were selected to ensure that the majority of the vorticity was confined 
tOa’;he region y<ync when O<x<x,. The use of the boundary condition (2.8) 
assumes that the initial vorticity induces a velocity field which satisfies all of the 
boundary conditions. The initial distribution of vorticity used, 

a& = - 2u,/dy, i = 0, . . . . m, 

wyj = 0, i = 1, . . . . m, O<j<n, 

satisfies this assumption. This choice of initial conditions corresponds to 
impulsively starting the fluid at time t = 0 with a velocity u,. 

A steady state solution of the equations is the Blasius solution [3, 19 1, This is a 
solution which is self-similar with a similarity variable 9 = y(u Jxv) ‘I’, i.e., the 
steady state solution (u, u) is given by 

4x9 Y) = Ub(ll)? 44 Y) = h?(v) 

where (udd WI)) is the Blasius solution. Our numerical scheme (2.9) with 
boundary conditions (2.13) was integrated to steady state. The mesh chosen was 
uniform in each direction and the timestep was chosen so that 6t < min(dy*/2v, 
dx/u, , dy/u,). No instability was observed for this choice of parameters. In Fig. 2.1 
we present a comparison of the Blasius solution and the computed solution at loca- 
tions x = 0.25, x = 0.5 and x = 0.75 along the plate. (The exact solution used is that 
given in [ 191.) Here dx= dy = 0.025 and dt =0.005. The difference between the u 
velocities of each solution is plotted versus the similarity variable q so that each 
profile can be compared with the others. The velocity profile which is most in error 
is that near the leading edge of the plate, x = 0.25. This is to be expected since the 
number of points resolving the important features of the velocity field is less at this 
station than at stations further down the plate. However, the maximum relative 
error of all the profiles is less than 1%. At the station located at x = 0.5 the maxi- 
mum error of the tangential velocity was 4.804%, 1.212%, and 0.242% for mesh 
widths 0.1, 0.05, and 0.025, respectively, and hence the method appeared to be con- 
verging at a rate of at least second order with respect to the spatial discretization. 

We conclude this section by discussing the relation between a method introduced 
by Chorin for solving the Prandtl boundary layer equations and an analogous finite 
difference scheme. In [S], Chorin uses the method of fractional steps and vorticity 
boundary creation to solve Eqs. (2.1)-(2.5). The discretization he uses is based on 
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0 1 2 3 4 5 6 7 

FIG. 2.1. Relative error (in percent) in steady state tangential velocity component for flow past a half 
infinite flat plate; Error = ( Ucomp - UBlar,ur)/l UBlarlur I.-, x = 0.25; ---, x = 0.5; , x = 0.75. 

computational elements which are segments of vortex sheets. The basic timestep, 
ignoring the precise implementation details, is as follows: An approximate solution 
of the inviscid equations is advanced one timestep (Eq. (2.1) without v). This leads 
to a vorticity distribution which induces a velocity field which does not satisfy the 
tangential boundary condition on the plate. If the velocity field at location i dx on 
the plate is ui, then vortex sheets of cumulative strength -2u, are created on the 
boundary. These sheets are then allowed to participate, with the sheets already in 
the fluid, in a random walk which approximates one step of the evolution of the 
viscous terms of the equation. If a sheet leaves the computational domain in this 
latter step, it is deleted. These steps are then repeated to advance the solution in 
time. (For an elementary discussion of the method see [7].) 

Consider now the following fractional step scheme which uses the finite diffeence 
approximations given previously: 

(2.14) is a discrete approximation to the advection component of the equation, 
while (2.15) is an approximation to the diffusive component. The normal derivative 
boundary condition 

Ai,#+ ,(uk, ok) + A&lk, 0.P) 
2 1 4 (2.16) 
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is incorporated into the finite difference stencil occurring in (2.15). The upper 
boundary condition is &Z/+li,, = 0. One can show, as with the explicit scheme 
given previously, that if the velocity field indiced by uk satisfies (2.5) then the 
velocity induced by e.#+ ’ satisfies (2.5) as well. 

The boundary condition (2.16) expresses the fact that there is a flux of vorticity 
into (out of) the fluid. Our goal is to find the amount of vorticity per timestep that 
is introduced by this boundary condition so that we may compare this with the 
amount of vorticity which is introduced at the boundary in Chorin’s vortex sheet 
algorithm. 

Given c? + ‘, the result of an Euler step using (2.14), we can consider the vorticity 
gk+’ obtained using (2.15) as being the sum of the solution to two separate 
problems. The first piece is an approximate solution to the diffusion component of 
the equation with homogeneous boundary conditions and Gkfl as initial data. 
The second piece is an approximate solution of the diffusion component of the 
equations with normal boundary condition (2.16) but with homogeneous initial 
data. It is the contribution of this latter piece of the solution which is the amount 
of vorticity introduced by the boundary condition (2.16). This vorticity W is that 
defined by 

&i,j - wO,d 

6t 
=vD,tD,,o, '.I 

with initial condition wO,, = 0 and boundary condition (2.16). Working through the 
algebra we find that 0 is non-zero only at the lower boundary (the points with 
j = 0), and is given by 

(jji,02 i c Ai.p+ I (Ilk, ok) + A j#(Uk, ok) 4 /,=o 2 1 dy. 
From (2.14) we have 

and using this expression in (2.17) we arrive at 

1 dy 

In this last simplification we assume w:., satisfies (2.5) discretely, i.e., 

(2.17) 

(2.18) 

u, + i (w:,+;+w:P)&=O. 
p=o 
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The expression on the right in Eq. (2.18) is precisely the u velocity at the plate 
which is induced by Gk+‘, i.e., the slip velocity at the plate induced by the vorticity 
after one step of Euler flow. Thus, again denoting the slip velocity at the point idx 
as ui, the amount of vorticity induced on the boundary is -2u,/Jy. In light of the 
formula for velocity reconstruction (2.11) this amount of vorticity induces a jump 
in velocity at the wall of ui. Thus, a sheet of strength uj has been generated at the 
boundary. 

With regard to Chorin’s method, sheets of cumulative strength -2~; are 
generated at every boundary point. (The strength of a sheet is equivalent to the 
opposite of the jump in velocity which it induces.) However, due to the random 
walk which these sheets participate in, half of the sheets introduced on the bound- 
ary will exit the computational boundary (on average). Hence the cumulative 
strength of the vortex sheets from the ith boundary point which actually enter the 
fluid is -ui. 

Thus, although Chorin’s scheme and the above finite difference method are based 
on very different discretizations, the strength of the vortex sheet created at each 
timestep on the boundary is the same. Furthermore, while not a proof, the existence 
of this finite difference analog of Chorin’s method strongly suggests that Chorin’s 
treatment of boundary conditions for the Prandtl equations is just a particular 
implementation of boundary conditions obtained by requiring the vanishing of the 
time derivative of the constraint imposed by the no-slip velocity condition at the 
plate. 

3. A FINITE DIFFERENCE METHOD FOR FLOW PAST A CYLINDER 

In this section we present a finite difference method for calculating flow past a 
circular cylinder in two dimensions. The construction of this scheme illustrates one 
possible technique for incorporating the boundary condition (1.10) into a numerical 
method. There are many other possible discretizations, some of which are computa- 
tionally more efficient, but we have selected this particular one because of its 
relative simplicity. 

Let 4 be the potential which corresponds to a uniform flow about the cylinder 
with an onset velocity parallel to the x axis and of magnitude U, at x = -co. We 
use polar coordinates and denote w as the vorticity and (u, U) = (ii + d,, 
v” + (l/r) d8) as the radial and tangential velocity components, respectively. With 
this notation Eq. (1.4) in non-dimensional form becomes 

(3.1) 

The Reynolds number Re is based on the cylinder diameter and is given by 
Re = 2r, U,/v where v is the viscosity of the fluid and r. is the cylinder radius. The 
velocities ii and 17 are determined from the stream function Y by the relations 
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1 a’y cc-- - av 
r ae’ v= -5 (3.2) 

AY= --w (3.3) 

Y=O at r=ro and lim ~ 
s 

*= aWry 0) r de = o 
r+5 0 ar 

This last requirement, the specification of the circulation of the velocity field 
induced by Y at infinity, is necessary for the equation determining Y to be well 
posed. 

Equation (3.1) is to be satisfied in the domain $2 described by r, < r < cc and 
0 < 8 < 27~. On the cylinder boundary &2, we require that u = 0 and v = 0. If we use 
the expression for 4, 

4=u, ( ) r + G cos(e), 

and set r = rrr then these boundary conditions imply that 

ti(r,, e) = 0, uI(r,, e) = 2U, sin(e), o<e6271. (3.5) 

If we denote by G(x, y) the Green’s function corresponding to the 
problem (3.3)-(3.4) the constraint on the vorticity is 

a 
an, s G(a, S) W(S, t) ds= -2U, sin(e), CI = (r, cos(e), ru sin(e)), 0 d e < 27r 

(3.6) 

Here n is the normal pointing into the cylinder. As derived in Section 1, the bound- 
ary conditions which will ensure that the time derivative of this constraint vanish 
are 

The finite difference grid used was uniform with mesh width dr and de in the r and 
0 variables, respectively. Our computational domain is described by an 
annulus-the set of grid points i dr, j de such that r. < ru + i dr < r. + n dr = r,, and 
0 <j de < m de = 27~. Here rh is the outer or “far field” radius of the computational 
domain. We denote the vorticity and velocity distribution at time k 6t by & and 
uk = (Us, ok), respectively. We used the standard five-point differencing for the 
Laplacian in polar coordinates, which we designate by Ad, and a second order 
approximation (a modified upwind scheme) to the advection term u + Vo due to 
Colella [S]. We designate this by A(uk, mk). (The choice of the approximation 
method for the advection terms of the equation is not a key element in the deriva- 
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tion of the boundary conditions. We chose this particular one out of the variety 
available because of its stability characteristics and its lack of numerical diffusion.) 
We used a first order explicit method for the time integration of the equations. In 
the interior the scheme is given by 

&+I-& 

6t 
= -A(Uk, w*)+&Adwk. (3.8) 

Here the sub-indices (i, j) which refer to the values at the node (i dr, j de) are 
suppressed. The velocity field u used in (3.8) is obtained by solving 

Ady’= -gk (3.9) 

and then using central difference approximations to (3.2) to obtain approximations 
to the velocities. 

In order to close eqs. (3.8) and (3.9) we must specify boundary conditions on the 
surface of the cylinder and at an artificial computational boundary r = rb. We shall 
discuss the boundary conditions related to this artificial boundary first. 

The effect of a finite computational boundary at r = rb introduces complications 
in calculation of (3.8) and in the solution of Laplace’s equation (3.9). As regards the 
treatment of the vorticity transport equation (3.8), we follow the simple procedure 
of eliminating any vorticity which exists the circular boundary with radius rb - dr 
(i.e., at the end of each time step, the vorticity which is in the outer ring of com- 
putational nodes-those at r = r,-is set to zero). The sum of vorticity which is 
deleted is saved, for this quantity is necessary in the consistent calculation of the 
stream function Y. 

As regards the calculation of the stream function, we form an approximation to 
the solution of (3.9) by utilizing a standard fast Poisson solver for the grid points 
in the computational region ra < r < r , b coupled with “infinite” boundary condi- 
tions [2]. The infinite boundary conditions are derived by requiring that the solu- 
tion in the finite component of the domain (r, 6 r < rb) match with an appropriate 
solution in the infinite component (r > rb). Such a matching condition can be 
explicitly obtained because the simple geometry of the problem allows one to com- 
pute the infinite component analytically. This procedure, based on ideas from 
domain decomposition techniques for elliptic problems, is similar to that used suc- 
cessfully by B. Fornberg in his steady state calculations [ 111. In the implementa- 
tion of infinite boundary conditions it is necessary to specify the circulation about 
the contour r = rb. We set this circulation equal to the total amount of vorticity 
which has exited the computational domain. With respect to our specific discretiza- 
tion, the amount of circulation accumulated at each timestep ck is given by 

ck = -c o&r, dr do, O<jd8<2n. (3.10) 

In essence, we are moving the vorticity which has departed from the computational 
domain out to infinity. As will be seen from the computational results, this simple 
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treatment of the far field boundary conditions-using outflow boundary conditions 
for the vorticity transport equation and “infinite” boundary conditions for the 
Laplacian in the stream function calculation-works surprisingly well. 

The other boundary conditions which must be dealt with are the conditions on 
the vorticity at the surface of the cylinder. As in the derivation of the vorticity 
boundary conditions, we set !P= 0 on the cylinder boundary and consider the 
normal derivative boundary condition on Y as the constraint to be satisfied. There 
are two possible paths to follow in the construction of a finite difference scheme 
which incorporates boundary condition (3.7). One path is to use the discretization 
of the equations in the interior (3.8) and incorporate a separate dicretization of 
(3.7) near the boundary to close them. If this path is followed, then it is likely that 
the boundary conditions corresponding to a discretization of (3.7) will not guaran- 
tee that a discrete approximation of the constraint (3.6) will be satisfied exactly at 
each timestep. However, assuming that the discretizations are done in an intelligent 
fashion, we expect that over a given time interval (3.6) will be satisfied up to an 
error which diminishes as the discretization is refined. Unfortunately, such an 
implementation is not particularly well suited to computations in which a steady 
state or long time solution is sought. For such solutions, it is desirable to ensure 
that the error in a discrete approximation to the constraint (3.6) be independent of 
the time interval. (This ensures that the final solution satisfies the boundary condi- 
tions with an acceptable accuracy.) The other implementation path, one which can 
be used to derive methods suitable for such calculations, starts with a discretization 
scheme for the interior equations (3.1) and then specific boundary conditions which 
correspond to such a scheme are obtained by mimicing, with discrete operators, 
those arguments used to obtain (3.7). The result is a method in which a discrete 
version of (3.6) is satisfied up to numerical roundoff at every timestep. In our 
calculations of flow past a cylinder we were interested in computing steady state 
solutions (in order that our results may be compared to existing computational 
results) so we chose the latter implementation path. We obtain our boundary con- 
ditions on the vorticity by following the derivation of the boundary conditions for 
the continuous case, but using discrete, rather than continuous operators. 

We denote by D, the standard one-sided finite difference approximation to the 
normal derivative at the cylinder surface: 

(3.11) 

We denote by At the five-point finite difference approximation to the Laplacian in 
which values on the cylinder boundary are taken to be identically zero. With this 
notation, the stream function at time k 6t is given by 

Y= -(A;) -I a?. 

A discrete approximation to constraint (3.6) is thus 

[D,(A$’ coklj= -2V, sin(j&). (3.12) 
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This condition holds for all points, (rcr, j&), on the surface of the cylinder. In this 
expression, the inverse of the discrete Laplacian in the computational region is 
computed using “infinite domain” boundary conditions. 

In order to ensure that this constraint be satisfied by the numerical scheme, we 
require that the discrete time difference of the constraint vanish, i.e., 

II”(A wk+‘-D”(A~)-‘wk=O 
6t 

If one uses the equations which o satisfies, then this becomes 

D”t4r’ (““‘l,wJzo 

oD”(A;)-’ -A(uk, wk)+&Adwk = 0. (3.13) 

In this last expression the evaluation of the discrete Laplacian incorporates the yet 
to be determined vorticity boundary values. In the continuous case, integration by 
parts is employed and the Laplacian occurring in this last expression is transformed 
to a functional of the boundary vorticity. We refrain from doing the discrete version 
of this (because it leads to an expression which is not computationally useful) and 
instead proceed to show (3.13) can be used to obtain a useful expression for deter- 
mining the boundary values of wk. Assuming (3.12) is satisfied by wk, we use (3.13) 
to determine the vorticity boundary values wi which will guarantee that wk+ i will 
satisfy (3.12). We write (3.13) as 

(3.14) 

Here we are evaluating (2/Re) Adwt by extending wi to be zero in the interior of 
the domain. The terms involving A(uk, wk) and Atok are completely known at time 
k dt, thus Eq. (3.14) becomes an equation for OS alone. (We are making the implicit 
assumption that the approximation to the convective term for the vorticity does 
not involve boundary values of vorticity.) From this last expression we obtain an 
equation for wi, 

~,(A~)-’ 2 
A(uk, w~)-~ A;wk (3.15) 

In our computation, the right-hand side of this equation is computed by evaluating 
each of the operators in turn, starting with the advection terms and the Laplacian. 
The discrete system on the left-hand side of (3.15) (the order of which is equal to 
the number of boundary points) is then solved for the vorticity boundary values. 
These values are then incorporated into the interior finite difference scheme (3.8). 
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One may be concerned about the invertibility of the operator on the left-hand 
side of (3.15). Consider a function p defined on the boundary of the cylinder. The 
inner product (p, D,(di)-i (A$)) can be cast in the form (Tp, (A:)-’ Tp) for a 
rank n finite difference operator T from R” to R”““. Here (., .) refers to the natural 
inner product defined on the interior mesh points-products of values times an 
integration factor r dr df?. Also, the action of the discrete Laplacian upon p, ddp, is 
evaluated assuming that p is extended to be zero at interior points of the domain. 
From this observation and the result that the finite difference operator (A:)-’ 
(inverted assuming a fixed circulation at r = rb) is negative definite, it follows that 
the operator in (3.15) is negative definite and hence non-singular. 

If one uses a direct method to solve (3.15) then it is necessary to form the 
operator on the left-hand side explicitly. One can form the matrix representation of 
(3.15) by considering the operators action upon a basis for wf. In our particular 
application of flow past a cylinder, this requires very little work because the 
operator is represented by a circulant matrix. The matrix can thus be constructed 
after calculation of the operators action on one basis element. Furthermore, the 
matrix is diagonalized by the discrete Fourier transform, so the inversion of the 
resulting matrix equation can be carried out efficiently using the fast Fourier trans- 
form. In other situations this will not be possible, but we note that the matrix only 
depends on the mesh size and does not depend on the physical parameters of the 
problem. There is some similarity of the operator occurring in (3.15) and that 
which arises when one employs domain decomposition techniques for solving 
elliptic boundary value problems [ 11. In the latter case iterative methods have 
proven remarkably efficient and it is quite likely that fast iterative methods for 
solving (3.15) are possible. 

One item to be discussed is the choice of initial conditions. In order that our 
boundary conditions be effective, we must ensure that the initial vorticity satisfy the 
constraint (3.12). For the Prandtl boundary layer equations, the choice of initial 
vorticity was easy to determine. For this problem, the choice of initial conditions 
is a bit more difficult. We would like an initial vorticity distribution which is non- 
zero only on the boundary of the cylinder-i.e., a set of initial conditions which 
corresponds to an impulsively started cylinder. A problem occurs becuase in the 
discrete equations the vorticity, if confined to the cylinder boundary points alone, 
does not induce any velocity. Only interior values of vorticity are used to form the 
right-hand side of the discrete approximation to (3.3)-(3.4). However, a suitable 
vorticity can be obtained by solving 

-2U, sin( j d0) 

for values on the cylinder boundary ~6, and defining 

coo=0 for (idr,jdO)eQ-c%2, 

COO=li$ for (idr,jdO)eXl. 
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It can be checked that this vorticity distribution, while not satisfying the constraint 
at time t = 0 itself, has the property that after the first timestep the approximate 
vorticity a1 will satisfy the constraint. For k > 1 the use of boundary conditions 
(3.13) will ensure that the remaining gk satisfy the constraint. 

We now summarize the basic steps of the algorithm 

[0] Construct initial data w”. 
[I] Given ak compute F= A(u~, gk) - (2/Re) Aiok. uk is determined by 

solving At (vk = --gk with appropriate boundary conditions and then 
differencing the result. In the computation of Yk the circulation at 
r = rh is set equal to the opposite of that mass of vorticity which which 
has exited the computational domain during the previous k steps. 

[II] Determine the boundary vorticity c$ by computing the solution to 

[III] Construct w k + ’ by using the difference equation 

0 k+l=gk+gt -A(uk, w”) + & Adok 

in the interior of the computational domain and using the boundary 
vorticity computed in step [II]. Remove the vorticity from the outer 
ring of computational points, those at r = rb, and accumulate the 
amount of vorticity deleted. 

In the next section we will discuss numerical results obtained with this method. 
As with Prandtl’s boundary layer equations, this algorithm is analogous to those 
used by Chorin. Consider the quantity 8, the result of one step of the 
Navier-Stokes equations using homogeneous boundary values for the vorticity, 

CS-CBk -= iit -A(uk, wk)+& A;cok . 
> 

Assuming that constraint (3.12) on the vorticity is satisfied at time k 61, we find that 
the right-hand side of the equation which determines the vorticity boundary values 
in step [II] can be expressed in terms of (3, i.e., 

&(A$)-’ P= &(A$)-’ -A(uk, w”) + & A&ok 
> 

= -[&(A~)-‘(~)]= -[D”(A:)-‘(~)+2U~~~n0], 
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Thus, as in Chorin’s schemes, the right-hand side is proportional to the error (or 
slip) in tangential velocity at the boundary. (The amount of vorticity actually intro- 
duced into the fluid is roughly proportional to the slip, for when the values of 0:: 
are incorporated into the interior scheme the factor 6t vanishes, cf. Section 2.) 

4. COMPUTATIONAL RESULTS 

In this section we present some numerical results which were obtained with the 
method presented in the previous section. Our primary goal in these computations 
was to assess the accuracy of the approximation of the vorticity at and near the 
cylinder surface (as this is a quantity which is most dependent on the implementa- 
tion of vorticity boundary conditions.) For the Reynolds numbers considered here 
(4-50) the polar grid which we used proved satisfactory. For higher Reynolds num- 
bers in which vorticity dynamics far away from the cylinder surface need to be 
resolved this grid is not satisfactory. Other grids, such as those successfully used 
by Fornberg in his steady state calculations [9-111, would be more efficient at 
resolving these features. Alternatively, it is possible to couple the results of our finite 
difference scheme near the cylinder surface with a Lagrangian vortex blob method 
to evolve the vorticity away from the cylinder surface. Such a scheme is currently 
being implemented and will be discussed elsewhere. 

In our calculations we concentrated on two measures of vorticity which have 
physical significance, the pressure distribution and the coefficient of drag. Both of 
these quantities can be written as functionals of the boundary vorticity and the 
normal derivative of the boundary vorticity. For a point 0 on the cylinder surface 
the pressure is given by 

P(B)=P,-vr, - i :Ed4 

where rrr is the radius of the cylinder. P, is the forward stagnation point pressure 
and the integral is taken from the forward stagnation point clockwise around the 
cylinder surface. The drag is given by 

D = v i:n (w -2) sin 0 de. 

In our calculations we measure the scaled non-dimensional counterpart of these 
quantities. The drag in this latter case is referred to as the coefficient of drag Cd and 
is given by Cd = D/$pUir,. 

In our calculations U, = 1.0, r. = 1.0, and p = 1. The Reynolds number of the 
flow was varied by changing the coefficient of viscosity. The computations were 
carried out with a timestep chosen so that the scheme was stable. For the Reynolds 
numbers considered here, the timestep was limited by the stability restriction 
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FIG. 4.1. Coefficient of drag Cd, vs time.-, Re = 4; ---, Re = 8; . . , Re = 20; - -, Re = 50. 

imposed by our use of an explicit scheme to calculate the diffusion of vorticity. (The 
constraint imposed by the advection scheme was less severe than that for the diffu- 
sion scheme.) Thus, in our computations, a timestep 6t was initially estimated on 
the basis of the requirement that 6t < (dr d0)/4v. In practice the timestep had to be 
taken slightly smaller than this estimate-but not exceedingly so. 

The change in time of the coefficient of drag for flows with different Reynolds 
numbers is plotted in Fig. 4.1. The rate depends somewhat on the Reynolds 
number, the higher the Reynolds number the more rapid the initial convergence to 
steady state. By time t = 40 an approximation to steady state appears to have been 
reached for each Renolds number. The coefficients of drag at the final times are 
presented in Table I, along the results of computations by Keller and Takami 
[ 13, 141 and the experimental work by Tritton [20]. (We chose these results as 
representative samples of the great body of results which exist for viscous flow past 
a cylinder.) The value of the farlield computational boundary rb was 21. The agree- 
ment is generally good, although our results for Reynolds numbers less than 50 
appear to be somewhat high. However, we are within the experimental error of the 
results given by Tritton. 

TABLE I 

Comparison of the Coefficient of Drag C, 

Re Present work 

4 4.9147 
8 3.3165 

20 2.1230 
50 1.4258 

Keller and Takami (camp.) 

4.4282 
- 

2.0027 
1.4182 

Tritton (exper.) 

4.7871 
3.3985 
2.0225 
1.4526 
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FIG. 4.2. Coeflicient of drag vs mesh size (mesh size measured by Jm). -, Re =4; 
Re = 8; Re = 20; - ---3 , -, Re = 50. 

The effect of numerical parameters upon the drag coefficient is illustrated in 
Figs. 4.2 and 4.3. In Fig. 4.2, we plot the change in drag with respect to the mesh 
size for each Reynolds number. In order to reduce the computational labor, the 
time at which the drag was measured was t = 20.0. This is not steady state, and in 
particular, it is not the same time used to measure the drag which appears in 
Table I, but sufhciently close to steady state so that the general convergence trend 
in the drag could be ascertained. These results indicate that for the Reynolds num- 
bers considered, our computational grid was sufficiently line to evaluate the drag 

7 

1: 
5 10 15 20 25 30 35 40 

FIG. 4.3. Coeflicient of drag vs. outer computational radius. -, Re = 4; ---, Re = 8; , Re = 20; 
.-.-, Re=50. 
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coefficient accurately. In Fig. 4.3 the change in drag associated with a change in the 
far field radius is plotted. We found the effect of the computational radius on the 
drag a bit surprising. A computational radius of 21 cylinder radii appears to be suf- 
ficient to yield accurate drag results-this is not a particularly distant computa- 
tional radius. Secondly, as the Reynolds number increases, it appears that one need 
not increase the far field radius. In fact, it appears that one can reduce it. This result 
is very nice, for it means that calculations of flows at much higher Reynolds num- 
bers may not need a correspondingly larger far field radius. This is the opposite 
conclusion which might be inferred from the steady state calculations of 
Fornberg [9-l 11. In those calculations it is readily apparent that as the Reynolds 
number increases, one must increase the far field radius in order to capture the 
steady state solution. 

We were interested in the effect of the far field radius on the pressure distribution. 
To investigate this, we concentrated upon the effect of this boundary for Reynolds 
number 50. In Fig. 4.4 we plot the pressure at the cylinder boundary corresponding 
to an outer computational radius of 6, 16, and 26 computational radii. Fortunately, 
as an examination of this figure provides, we find that the pressure is not greatly 
effected by the far-field boundary condition either. The most significant effect of the 
far-field boundary is to increase the drop from the front to the back of the cylinder. 
In light of the formula which defines the pressure, it appears that the primary effect 
of having a close computational radius is to increase the flux of vorticity from the 
cylinder surface. That this occurs when the computational boundary is close to the 
cylinder seems plausible, for our computational boundary is a perfect absorber of 
vorticity and hence “draws” more vorticity away from the cylinder wall. At higher 
Reynolds, when the flow is non-stationary, it is not clear that a similar mechanism 
will occur. Further numerical work should clarify the situation in the latter 
circumstance. 

-2.5 1 i 
-200 -150 -100 -50 0 50 loo 150 200 

FIG. 4.4. Pressure distribution, P = (P - P,)/fpU& at Re= 50.--, outer radius =26; ---, outer 
radius = 16; - -, outer radius = 6. 

581/80/l-7 
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Lastly, we were interested in the effect of using a first order upwind scheme to 
approximate the advection term in Eq. (3.1). This interest arises because upwind 
schemes can be very inaccurate, yet remain popular because of their simplicity and 
stability properties. We thought that it would be of interest to investigate the 
quality of the solutions which could be obtained with such schemes. For this pur- 
pose we concentrated on flows at Re = 50, and used corner transport upwind [S], 
a variant of the standard upwind difference scheme which includes the upwind 
corner points in the difference stencil. 

There were significant differences in the results between first and second order 
upwind. When using the finest grid, the drag calculated at time t = 20.0 by the 
second order scheme was 1.50455, while that obtained with the first order scheme 
1.23395-a difference of 17 %. The fact that the drag was lower was an unexpected 
result. The upwind schemes are known for their numerical diffusion and we had 
thought that the calculations would yield a result corresponding to a more viscous 
flow, i.e., a higher drag coefficient. However, one must be careful about drawing 
conclusions about the nature of a numerical solution based on the coefficient of 
drag alone. In Figs. 4.5a and 4.5b we present vorticity contours obtained with a first 
and second order upwind scheme. In Fig. 4.5~ we present the vorticity contour for 
a Reynolds number 20 solution (obtained using a second order method.) As is evi- 
dent from the figures, the first order upwind scheme shares the properties similar 
to the lower Reynolds number calculation. In particular, there is a lower maximum 
vorticity on the surface of the cylinder (first order Re = 50; o,,, = 6.618, second 
order Re = 50; o,,, = 7.822, and second order Re = 20; o,,, = 4.673) and a greater 
angle between the vorticity contours and a tangent to the cylinder surface. That this 
qualitative similarity is not reflected in the drag coefficient is due to the fact that 

FIG. 4.5a. Vorticity contours for first order upwind, Re = 50, -0.5 to -7.25 (0.5). 
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FIG. 4Sb. Vorticity contours for second order upwind, Re = 50, -0.5 to -7.25 (0.5). 

this coefficient is the product of a scaling factor and a function of the vorticity, 
namely, the integral 

(4.1) 

Although the drag coefficient decreases as the Reynolds number increases, the 
factor (4.1) actually increases with increasing Reynolds number. For example, for 
the second order scheme, this integral has the approximate values 9.8, 13.2, 21.2, 
and 37.6 for Reynolds numbers 4, 8, 20, and 50, respectively. For the first order 
upwind scheme, the value of the integral is about 30.8, reflecting the fact that the 
computed vorticity field corresponds to a more diffusive calculation. Thus, the coef- 

FIG. 4.5~. Vorticity contours for second order upwind, Re = 20, -0.5 to -7.25 (0.5). 



96 CHRISTOPHER R. ANDERSON 

FIG. 4.6. Coefficient of drag vs mesh size (mesh size measured by &&@). -, second order 
upwind; ---, lirst order upwind. 

ticient of drag for a diffusive scheme, being the product of a smaller integral factor 
times a smaller scaling factor, can be expected to be smaller rather than larger that 
the correct coefficient. In Fig. 4.6 we plot the coeflicient of drag versus a measure 
of the mesh size, dm. From this figure we see that at the finest grid level 
used, the first order upwind scheme has not converged and thus the difference in 
the drag is understandable. It is clear that a second order scheme is superior and 
should be used. 

5. CONCLUSIONS 

In this paper we have given a derivation of appropriate boundary conditions for 
the vorticity associated with the velocity field of an incompressible, viscous fluid in 
two dimensions. The key point in the derivation of these boundary conditions is to 
realize that the evolution of the vorticity is a constrained evolution, and boundary 
conditions can be determined by requiring that the time derivative of the constraint 
vanish. We have also presented a method which incorporates these boundary con- 
ditions. In the case of the Prandtl boundary layer equations the method which 
results is analogous to Chorin’s vortex sheet method [S] which is of the vorticity 
creation type. For the complete Navier-Stokes equations, the implementation has 
similarities to Chorin’s original vortex blob method [4] and is formally equivalent 
to an implementation of the projection method of Quartapelle and Valz- 
Gris [ 16, 171. These observations provide an interpretation of the relation between 
two apparently different methods. Both methods are designed to ensure that the 
constraint on the vorticity is satisfied-it is just that the creation algorithms accom- 
plish this by ensuring that the time derivative of the constraint vanish. 
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Our numerical results for flow past a cylinder indicate that accurate schemes 
which employ our boundary conditions can be constructed. Moreover, the results 
indicate that the difficulties associated with an infinite computational domain are 
not overwhelming, and can be overcome with a straightforward procedure. The 
accuracy of the scheme we present is satisfactory for low Reynolds numbers 
(perhaps up to a few hundred), but it is not especially efficient for high Reynolds 
number flows. Many improvements can be envisioned, for example, using a dif- 
ferent grid to resolve the vorticity dynamics downstream from the cylinder or a dif- 
ferent time-stepping procedure. One of the benefits of having a concise description 
of the vorticity boundary conditions is that it facilitates the implementation of these 
improvements. 
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